Introduction

Mesoscopio Mechanism

1D Nonloca Model for Gyratory Compaction

Conclusions

One-Dimensional Nonlocal Model for Gyratory Compaction of Asphalt Mixtures

Tianhao Yan, Jia-Liang Le, Mihai Marasteanu, Mugurel Turos yan00004@umn.edu

X

University of Minnesota Department of Civil, Environmental, and Geo- Engineering

CICTP2020-21, Dec 17 2021

Introduction

Mesoscopic Mechanism

LD Nonlocal Model for Gyratory Compaction

Conclusion

Tianhao Yan

About the authors

Jia-Liang Le

Mihai Marasteanu

Mugurel Turos

イロト イヨト イヨト イヨ

Tianhao Yar

Introduction

Mesoscopic Mechanism

1D Nonlocal Model for Gyratory Compaction

Conclusions

Research Background

- Importance of compaction
 - Compaction \rightarrow field density \rightarrow durability.
- Current situation
 - Low field density is a prevalent issue: Superpave designs mixtures to 4% air voids, while the in-place air voids are typically $7{\sim}8$ % in the field.
- Limited understanding on compaction
 - Complexity of the material: multiscale and multiphase
 - Although many research efforts have been devoted to high-fidelity numerical simulations (FEM and DEM) of compaction, some basic questions still remain unanswered.

Tianhao Yan

Introduction

Mesoscopic Mechanism

1D Nonloca Model for Gyratory Compaction

Conclusion

Figure: Gyratory compaction and results (ϕ_{ave} represents the average %G_{mm} of the specimen, ϕ represents the local %G_{mm})

- Rate of densification decreases with time.
- Rate of densification increases with the amplitude of gyratory shear.
- Density profile in the vertical direction has a bathtub shape.

Tianhao Yan

Introduction

Figure: Size effect

Size effect:

• taller specimens are easier to compact than shorter ones.

How to physically explain these phenomena?

Tianhao Yan

Introduction

Mesoscopic Mechanism

1D Nonlocal Model for Gyratory Compaction

Conclusions

Objectives

- Explain the aforementioned phenomena of compaction by physical mechanism at the **mesoscale**.
- Develop an **analytical model** for gyratory compaction considering the mesoscale mechanism.

Figure: Different length scales of the compaction of asphalt mixtures

Tianhao Yan

CICTP2020-2

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Tianhao Yan

Introduction

Mesoscopic Mechanism

1D Nonlocal Model for Gyratory Compaction

Conclusions

Table of Contents

1 Introduction

2 Mesoscopic Mechanism

③ 1D Nonlocal Model for Gyratory Compaction

4 Conclusions

Tianhao Yan

・ロト ・ 一下・ ・ 日下・ ・ 日

Tianhao Yan

Introduction

Mesoscopic Mechanism

1D Nonlocal Model for Gyratory Compaction

Conclusions

Aggregate Rearrangement

Figure: Energy landscape of aggregate rearrangements

- Static compression along leads to very limited compaction, because aggregates jam to a stable packing state (jammed state), represented by a local minimum (metastable state) in the energy landscape.
- Shear or vibration excitation provides the aggregates with kinematic energy to jump out of the energy well and evolve to denser packing states with lower potential energy.

Tianhao Yan

Introduction

Mesoscopic Mechanism

1D Nonlocal Model for Gyratory Compaction

Conclusions

Aggregate Rearrangement

Figure: Energy landscape of aggregate rearrangements

- Static compression along leads to very limited compaction, because aggregates jam to a stable packing state (jammed state), represented by a local minimum (metastable state) in the energy landscape.
- Shear or vibration excitation provides the aggregates with kinematic energy to jump out of the energy well and evolve to denser packing states with lower potential energy.

General Idea for Compaction Modeling

Introduction

Mesoscopic Mechanism

1D Nonloca Model for Gyratory Compaction

Conclusion

The rate of transition between adjacent metastable states can be estimated by transition rate theory:

$$f = f_0 \exp(-U_b/E_s)$$

where U_b is the energy barrier, E_s is the kinematic energy of the random motion of aggregates.

Tianhao Yan

1D Nonlocal Model for Gyratory Compaction

Table of Contents

Introduction

Mesoscopic Mechanism

3 1D Nonlocal Model for Gyratory Compaction

A Conclusions

Tianhao Yan

ъ

イロト イヨト イヨト イ

Introduction

Mesoscopic Mechanism

1D Nonlocal Model for Gyratory Compaction

Conclusions

Reduce the Problem to 1D

Each material point represents a cross-section of the specimen

nn	h 20	Van
an	nau	i aii

CICTP2020-21

CICTP2020-21 Tianhao Yan Introduction

Mesoscopic Mechanism

1D Nonlocal Model for Gyratory Compaction

Conclusions

Conservation of Mass

• Conservation of mass written in the reference configuration.

$$\frac{\mathrm{d}}{\mathrm{d}t}\left\{\phi(x,t)\frac{\partial x(X,t)}{\partial X}\right\} = 0 \tag{1}$$

where ϕ is the compaction ratio, i.e., a non-dimensional density $\phi=
ho/
ho_{m}$

• Assume the initial density profile is uniformly distributed:

$$\phi(X,0) = \phi_0 \tag{2}$$

< □ > < 同

• Thus:

$$\phi(x,t)\frac{\partial x(X,t)}{\partial X} = \phi_0 \tag{3}$$

1D Nonlocal Model for Gyratory Compaction

Πt U_b $P\delta V$ State A State B $-\Delta V$

Densification Rate Model

• Kramers equation (transition rate theory):

$$f = f_0 \exp(-U_b/E_s) \tag{4}$$

Densification rate: •

$$\dot{\epsilon}_V = -f_V \delta V / V_0 = -f_0 \epsilon_0^2 \frac{P V_0}{E_s} \exp(-U_b / E_s)$$
(5)

- E_s is related to the amplitude of gyratory shear and is assumed as a constant.
- How to estimate the energy barrier U_b ?
 - U_h should increase as the material getting denser.

Lianhao Yan			
	linn	hao	Van
	- I all	iiau -	I all

CICTP2020-21 Tianhao Yan Introduction

Mesoscopic Mechanism

1D Nonlocal Model for Gyratory Compaction

Conclusions

Densification Rate Model

• We propose a simple relation between the energy barrier and the **nonlocal density** (will be introduced in the next slide).

$$U_b = U_0 + U_1 \langle \bar{\phi} - \phi_t \rangle^k \tag{6}$$

where $\langle x \rangle = \max(x, 0)$, and $U_0, U_1, k, \phi_t = \text{constants}$.

• Substituting it to the Eq: $\dot{\epsilon}_V = -f_0 \epsilon_0^2 \frac{PV_0}{E_s} \exp(-U_b/E_s)$, we obtain:

$$\frac{\partial v(x,t)}{\partial x} = -C_1 P \exp\left[-C_2 \langle \bar{\phi}(x,t) - \phi_t \rangle^k\right]$$
(7)

Note: in 1D the volumetric strain rate $\dot{\epsilon}_V$ equals $\frac{\partial v(x,t)}{\partial x}$

Image: A match a ma

Mesoscopic Mechanism

1D Nonlocal Model for Gyratory Compaction

Conclusions

Why Nonlocal Density?

Aggregate rearrangement is a **nonlocal** process:

- A collective behavior of a **cluster** of aggregates.
- movement of one aggregate affects the rearrangement of the neighborhood aggregates
- A material length scale should be introduced to the model, i.e., the size of cluster.

Mesoscopic Mechanism

1D Nonlocal Model for Gyratory Compaction

Conclusions

Nonlocal Density

$$\bar{\phi}(x,t) = \int_{-\infty}^{\infty} \alpha \left(x - x' \right) \phi \left(x', t \right) dx'$$
(8)

where $\alpha(\cdot)$ is the Gaussian nonlocal weighting function $\alpha(x) = \frac{1}{l_a \sqrt{2\pi}} \exp(-\frac{x}{2l_a^2})$, where l_a represents the length scale of aggregate rearrangement, and $l_a \propto$ aggregate size.

• An alternative way of solving Eq. 8, is by solving the following **implicit** gradient model:

$$\bar{\phi}(x,t) - \frac{l_a^2}{2} \frac{\partial^2 \bar{\phi}(x,t)}{\partial x^2} = \phi(x,t)$$
(9)

Mesoscopio Mechanism

1D Nonlocal Model for Gyratory Compaction

Conclusions

Summary of Governing Equations and Boundary Conditions Governing equations:

Conservation of mass:
$$\phi(x, t) \frac{\partial x(X, t)}{\partial X} = \phi_0$$
 (10)

Densification rate model:
$$\frac{\partial v(x,t)}{\partial x} = -C_1 P \exp\left[-C_2 \langle \bar{\phi}(x,t) - \phi_t \rangle^k\right]$$
 (11)

Gradient model for nonlocal density: $\bar{\phi}(x,t) - \frac{l_a^2}{2} \frac{\partial^2 \bar{\phi}(x,t)}{\partial x^2} = \phi(x,t)$ (12)

Boundary and initial conditions:

Initial condition:x(X,0) = X(13)Boundary conditions: $v(0,t) = v_0(t) = 0$, for $t \ge 0$ (14)

$$x(0,t) = x_0(t) = 0, ext{ for } t \ge 0$$
 (15)

イロト 不得下 イヨト イヨト

Nonlocal boundary conditions:
$$\bar{\phi}(0,t) = \bar{\phi}(L,t) = 1$$
, for $t \ge 0$ (16)

Introduction

Mesoscopic Mechanism

1D Nonlocal Model for Gyratory Compaction

Conclusion

Simulation Results

- The model can simulate the density profile which is consistent with experimental results, because the consideration of:
 - nonlocality
 - nonlocal boundary effect

Tianhao Yan

CICTP2020-22

Introduction

Mesoscopic Mechanism

1D Nonlocal Model for Gyratory Compaction

Conclusions

Experimental Validation

Figure: Compaction curves of different size specimens, comparison between simulation and experimental results

- Gyratory compaction tests of different specimen heights were performed to validate the model.
- The model can simulate the shape of compaction curves, because the consideration of:
 - compaction mechanism of aggregate rearrangement.
- The model can simulate the size effect observed in experiments, because the consideration of:
 - nonlocality.

Tianhao Yan

CICTP2020-21

Dec 17 2021 19 / 22

Conclusions

Table of Contents

1 Introduction

Mesoscopic Mechanism

3 1D Nonlocal Model for Gyratory Compaction

Conclusions

Tianhao Yan

-

イロト イヨト イヨト イ

- Introduction
- Mesoscopic Mechanism
- 1D Nonlocal Model for Gyratory Compaction
- Conclusions

Conclusions

- Aggregate rearrangement is proposed as the main physical mechanism for compaction of asphalt mixtures, which explains many macroscopic phenomena in gyratory compaction.
- Based on the physical mechanism, a 1D nonlocal model is developed, which simulates the shape of overall compaction curve, the size effect, and shape of density profile.
- The model provides an effective means to characterize the compactability of asphalt mixtures.
- Since the model predicts the size effect in gyratory compaction, it also provides a qualitative explanation for the size effect in the field, i.e., the effects of lift thickness and aggregate size on the field compaction.

イロト イボト イヨト イヨト

- Mesoscopic Mechanism
- 1D Nonlocal Model for Gyratory Compaction
- Conclusions

Conclusions

- Aggregate rearrangement is proposed as the main physical mechanism for compaction of asphalt mixtures, which explains many macroscopic phenomena in gyratory compaction.
- Based on the physical mechanism, a 1D nonlocal model is developed, which simulates the shape of overall compaction curve, the size effect, and shape of density profile.
- The model provides an effective means to characterize the compactability of asphalt mixtures.
- Since the model predicts the size effect in gyratory compaction, it also provides a qualitative explanation for the size effect in the field, i.e., the effects of lift thickness and aggregate size on the field compaction.

- Mesoscopic Mechanism
- 1D Nonlocal Model for Gyratory Compaction
- Conclusions

Conclusions

- Aggregate rearrangement is proposed as the main physical mechanism for compaction of asphalt mixtures, which explains many macroscopic phenomena in gyratory compaction.
- Based on the physical mechanism, a 1D nonlocal model is developed, which simulates the shape of overall compaction curve, the size effect, and shape of density profile.
- The model provides an effective means to characterize the compactability of asphalt mixtures.
- Since the model predicts the size effect in gyratory compaction, it also provides a qualitative explanation for the size effect in the field, i.e., the effects of lift thickness and aggregate size on the field compaction.

イロト イポト イヨト イヨト

- Mesoscopic Mechanism
- 1D Nonlocal Model for Gyratory Compaction
- Conclusions

Conclusions

- Aggregate rearrangement is proposed as the main physical mechanism for compaction of asphalt mixtures, which explains many macroscopic phenomena in gyratory compaction.
- Based on the physical mechanism, a 1D nonlocal model is developed, which simulates the shape of overall compaction curve, the size effect, and shape of density profile.
- The model provides an effective means to characterize the compactability of asphalt mixtures.
- Since the model predicts the size effect in gyratory compaction, it also provides a qualitative explanation for the size effect in the field, i.e., the effects of lift thickness and aggregate size on the field compaction.

- Introductior
- Mesoscopic Mechanism
- 1D Nonlocal Model for Gyratory Compaction
- Conclusions

References

- 1 <u>T. Yan</u>, M. Marasteanu, and J.-L. Le. One-dimensional nonlocal model for gyratory compaction of hot asphalt mixtures. *Journal of Engineering Mechanics*, 148(2):04021144, 2022. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002073
- 2 T. Yan, M. Marasteanu, and J.-L. Le. Mechanism-based evaluation of compactability of asphalt mixtures. *Road Materials and Pavement Design*, 22(sup1):S482–S497, 2021. https://doi.org/10.1080/14680629.2021.1905697

