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Research Background

• Importance of compaction
• Compaction → field density → durability.

• Current situation
• Low field density is a prevalent issue: Superpave designs mixtures to 4% air

voids, while the in-place air voids are typically 7∼8 % in the field.

• Limited understanding on compaction
• Complexity of the material: multiscale and multiphase
• Although many research efforts have been devoted to high-fidelity numerical

simulations (FEM and DEM) of compaction, some basic questions still remain
unanswered.
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Macroscopic Phenomena of Gyratory Compaction

Figure: Gyratory compaction and results (
φave represents the average %Gmm of the
specimen, φ represents the local %Gmm )

• Rate of densification decreases with
time.

• Rate of densification increases with
the amplitude of gyratory shear.

• Density profile in the vertical
direction has a bathtub shape.
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Macroscopic Phenomena of Gyratory Compaction

Figure: Size effect

Size effect:

• taller specimens are easier to
compact than shorter ones.

How to physically explain these
phenomena?
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Objectives
• Explain the aforementioned phenomena of compaction by physical mechanism

at the mesoscale.
• Develop an analytical model for gyratory compaction considering the

mesoscale mechanism.

Figure: Different length scales of the compaction of asphalt mixtures
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Aggregate Rearrangement

Figure: Energy landscape of
aggregate rearrangements

• Static compression along leads to very
limited compaction, because aggregates jam
to a stable packing state (jammed state),
represented by a local minimum (metastable
state) in the energy landscape.

• Shear or vibration excitation provides the
aggregates with kinematic energy to jump
out of the energy well and evolve to denser
packing states with lower potential energy.
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Figure: Energy landscape of
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General Idea for Compaction Modeling

The rate of transition between adjacent metastable states can be estimated by
transition rate theory:

f = f0 exp(−Ub/Es)

where Ub is the energy barrier, Es is the kinematic energy of the random motion of
aggregates.
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Reduce the Problem to 1D

Each material point represents a cross-section of the specimen
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Conservation of Mass

• Conservation of mass written in the reference configuration.

d

dt

{
φ(x , t)

∂x(X , t)

∂X

}
= 0 (1)

where φ is the compaction ratio, i.e., a non-dimensional density φ = ρ/ρm

• Assume the initial density profile is uniformly distributed:

φ(X , 0) = φ0 (2)

• Thus:

φ(x , t)
∂x(X , t)

∂X
= φ0 (3)
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Densification Rate Model

• Kramers equation (transition rate theory):

f = f0 exp(−Ub/Es) (4)

• Densification rate:

ε̇V = −fV δV /V0 = −f0ε20
PV0

Es
exp(−Ub/Es) (5)

• Es is related to the amplitude of gyratory shear and is assumed as a constant.
• How to estimate the energy barrier Ub?

• Ub should increase as the material getting denser.
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Densification Rate Model

• We propose a simple relation between the energy barrier and the nonlocal
density (will be introduced in the next slide).

Ub = U0 + U1〈φ̄− φt〉k (6)

where 〈x〉 = max(x , 0), and U0,U1, k , φt = constants.

• Substituting it to the Eq: ε̇V = −f0ε20
PV0
Es

exp(−Ub/Es), we obtain:

∂v(x , t)

∂x
= −C1P exp

[
−C2〈φ̄(x , t)− φt〉k

]
(7)

Note: in 1D the volumetric strain rate ε̇V equals ∂v(x ,t)
∂x
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Why Nonlocal Density?

Aggregate rearrangement is a nonlocal process:

• A collective behavior of a cluster of aggregates.

• movement of one aggregate affects the rearrangement of the neighborhood
aggregates

• A material length scale should be introduced to the model, i.e., the size of
cluster.
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Nonlocal Density

• To characterize the interacting of the neighboring aggregates, we define a
nonlocal density φ̄ as the weighted average of φ:

φ̄(x , t) =

∫ ∞
−∞

α
(
x − x ′

)
φ
(
x ′, t

)
dx ′ (8)

where α(·) is the Gaussian nonlocal weighting function
α(x) = 1

la
√
2π

exp(− x
2l2a

), where la represents the length scale of aggregate

rearrangement, and la ∝ aggregate size.

• An alternative way of solving Eq. 8, is by solving the following implicit
gradient model:

φ̄(x , t)− la
2

2

∂2φ̄(x , t)

∂x2
= φ(x , t) (9)
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Summary of Governing Equations and Boundary Conditions
Governing equations:

Conservation of mass: φ(x , t)
∂x(X , t)

∂X
= φ0 (10)

Densification rate model:
∂v(x , t)

∂x
= −C1P exp

[
−C2〈φ̄(x , t)− φt〉k

]
(11)

Gradient model for nonlocal density: φ̄(x , t)− la
2

2

∂2φ̄(x , t)

∂x2
= φ(x , t) (12)

Boundary and initial conditions:

Initial condition: x(X , 0) = X (13)

Boundary conditions: v(0, t) = v0(t) = 0, for t ≥ 0 (14)

x(0, t) = x0(t) = 0, for t ≥ 0 (15)

Nonlocal boundary conditions: φ̄(0, t) = φ̄(L, t) = 1, for t ≥ 0 (16)
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Simulation Results

Figure: Simulated density profile

• The model can simulate the density
profile which is consistent with
experimental results, because the
consideration of:
• nonlocality
• nonlocal boundary effect

Figure: Tested density profile (Masad and
Button, 2004)
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Experimental Validation

Figure: Compaction curves of different size
specimens, comparison between simulation
and experimental results

• Gyratory compaction tests of
different specimen heights were
performed to validate the model.

• The model can simulate the shape
of compaction curves, because the
consideration of:
• compaction mechanism of

aggregate rearrangement.

• The model can simulate the size
effect observed in experiments,
because the consideration of:
• nonlocality.
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Conclusions

• Aggregate rearrangement is proposed as the main physical mechanism for
compaction of asphalt mixtures, which explains many macroscopic phenomena
in gyratory compaction.

• Based on the physical mechanism, a 1D nonlocal model is developed, which
simulates the shape of overall compaction curve, the size effect, and shape of
density profile.

• The model provides an effective means to characterize the compactability of
asphalt mixtures.

• Since the model predicts the size effect in gyratory compaction, it also
provides a qualitative explanation for the size effect in the field, i.e., the effects
of lift thickness and aggregate size on the field compaction.
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