Relating N_{design} to Field Compaction –a Case Study in Minnesota

Tianhao Yan^a, Mugurel Turos^a, Chelsea Bennett^b, John Garrity^b, Mihai Marasteanu^a

^a University of Minnesota Department of Civil, Environmental, and Geo- Engineering

^b Minnesota Department of Transportation Office of Materials and Road Research

AAPT 2021, Aug 31st 2021

Yan, Turos, Bennett, Garrity, and Marasteanu

Relating N_{design} to Field Compaction

AAPT 2021, Aug 31 1 / 19

< <p>I > < <p>I

Research Background

- Importance of field density has been well recognized.
 - Field density \rightarrow durability.
- Current situation of field density:
 - Mixtures are designed to 96%G_{mm}, but typically can only reach 93%G_{mm} in the field.
 - A mismatch between design density and field density.
 - Durability related issues are prevalent.
- Reason for the low field density, in terms of mix design
 - Design compaction effort (N_{design}) is chosen too high (Prowell and Brown, 2007; Waston et al., 2008; Harmelink and Aschenbrener, 2002).

Research Background

- Importance of field density has been well recognized.
 - Field density \rightarrow durability.
- Current situation of field density:
 - Mixtures are designed to $96\% G_{mm},$ but typically can only reach $93\% G_{mm}$ in the field.
 - A mismatch between design density and field density.
 - Durability related issues are prevalent.
- Reason for the low field density, in terms of mix design
 - Design compaction effort (N_{design}) is chosen too high (Prowell and Brown, 2007; Waston et al., 2008; Harmelink and Aschenbrener, 2002).

イロト 不得下 イヨト イヨト 二日

Research Background

- Importance of field density has been well recognized.
 - Field density \rightarrow durability.
- Current situation of field density:
 - Mixtures are designed to $96\% G_{mm},$ but typically can only reach $93\% G_{mm}$ in the field.
 - A mismatch between design density and field density.
 - Durability related issues are prevalent.
- Reason for the low field density, in terms of mix design
 - Design compaction effort (N_{design}) is chosen too high (Prowell and Brown, 2007; Waston et al., 2008; Harmelink and Aschenbrener, 2002).

イロト 不得 トイヨト イヨト 二日

Effect of N_{design} on Compactability of Mixtures

- For fixed design air voids: $\uparrow N_{design} \rightarrow \downarrow$ compactability $\rightarrow \downarrow$ field density level.
- What value of N_{design} should we use?

Previous Study

Superpave 5

- Developed by Purdue University, Heritage Research Group, and INDOT (Huber et al., 2016, Hekmatfar et al., 2015).
- Achieve a consistency between design density and field density.
 - "Design to 5% air voids and compacted to 5% air voids in the field".
- N_{design} must represent the field compaction effort.

Table: Values of N_{design}

Traffic level	3 (1-3m ESAL)	4 (3-10m ESAL)	5 (10-30m ESAL)
MnDOT Spec.	60	90	100
Superpave 5	30	50	50

Objective

• Propose a rational method to estimate field compaction effort as number of gyrations.

Yan, Turos, Bennett, Garrity, and Marasteanu

- \blacksquare Analysis of field density data: effect of $N_{\rm design}$ on field density
- 2 Estimate field compaction effort by using field density data
- **③** Case study: a Superpave 5 project in Minnesota
- Occursion of the termination of terminatio of termination of termination of termination of ter

Image: A matrix

- 1354 density data of field cores were collected from 15 projects, including traffic levels 3, 4 and 5.
- N_{design} for traffic levels 3, 4 and 5 are 60, 90, and 100 respectively.
- Field density decreases with the increase in N_{design}.
- N_{design} can serve as a design parameter to control field density.

- 1354 density data of field cores were collected from 15 projects, including traffic levels 3, 4 and 5.
- N_{design} for traffic levels 3, 4 and 5 are 60, 90, and 100 respectively.
- Field density decreases with the increase in N_{design}.
- N_{design} can serve as a design parameter to control field density.

- 1354 density data of field cores were collected from 15 projects, including traffic levels 3, 4 and 5.
- N_{design} for traffic levels 3, 4 and 5 are 60, 90, and 100 respectively.
- Field density decreases with the increase in $N_{\rm design}.$

 N_{design} can serve as a design parameter to control field density.

- 1354 density data of field cores were collected from 15 projects, including traffic levels 3, 4 and 5.
- N_{design} for traffic levels 3, 4 and 5 are 60, 90, and 100 respectively.
- Field density decreases with the increase in N_{design}.

 N_{design} can serve as a design parameter to control field density.

- 1354 density data of field cores were collected from 15 projects, including traffic levels 3, 4 and 5.
- N_{design} for traffic levels 3, 4 and 5 are 60, 90, and 100 respectively.
- Field density decreases with the increase in N_{design}.
- N_{design} can serve as a design parameter to control field density.

 \blacksquare Analysis of field density data: effect of $N_{\rm design}$ on field density

2 Estimate field compaction effort by using field density data

⁽³⁾ Case study: a Superpave 5 project in Minnesota

Occursion of the terminal of terminal o

Image: A matrix

Estimating Field Compaction Effort

• A concept, "the equivalent number of gyrations to field compaction", or N_{equ}, is proposed to characterize field compaction effort.

Results of N_{equ}

э

< □ > < □ >

Results of N_{equ} (cont.)

Traffic level	N _{design}	Project ID	Mean field density	N _{equ}	Ave. N _{equ}
3	60	P1	94.29	29	28.7
		P2	93.98	29	
		P3	94.72	28	
4	90	P4	93.10	26	26.5
		P5	93.28	27	

Table 3 N_{equ} values of the five recent Minnesota projects.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○ ○○○

• Analysis of field density data: effect of N_{design} on field density

2 Estimate field compaction effort by using field density data

③ Case study: a Superpave 5 project in Minnesota

Occurrent Conclusions and future directions

< □ > < 向

Set N_{design} as N_{equ}

- A SP5 mixture was designed and placed on a project in Minnesota. The N_{design} was chosen similar to the computed $N_{equ}.$
 - $N_{design} = 30$, design air voids = 5%.
- The field density and performance test results of this project were compared with a traditional project (P2), which has the same NMAS and traffic level as the SP5 project.

Field Density

- Mean field density:
 - SP5 (94.69%) > Traditional SP (93.94%)
- Standard Deviation (variability):
 - SP5 (1.98%) > Traditional SP (1.32%)

- Rutting Resistance: Flow Number Test
- Dynamic Modulus: Diametral E* Test
- Cracking Resistance: SCB Test

э

< □ > < 同

Rutting Resistance, Flow Number Test

э

 $\langle \Box \rangle \langle \Box \rangle$

Dynamic Modulus, Diametral E* Test

▶ < ∃ > 16/19 AAPT 2021, Aug 31

э

<ロト < 回ト < 回

Cracking Resistance, SCB Test

э 17 / 19 AAPT 2021, Aug 31

э

< □ > < 同

- Analysis of field density data: effect of N_{design} on field density
- 2 Estimate field compaction effort by using field density data
- ⁽³⁾ Case study: a Superpave 5 project in Minnesota
- Occursion of the termination of terminatio of termination of termination of termination of ter

< □ > < 向

Conclusions

- There is a clear negative correlation between N_{design} and field density.
- A new parameter, N_{equ} , was proposed to characterize the field compaction effort.
- $N_{equ} \approx$ 30, regardless of traffic level or NMAS.
- By setting N_{design} as N_{equ} , the field density level of the SP5 mixture is significantly improved to the design density level.
- Performance tests results show that the rutting and cracking performance of SP5 mixture are not sacrificed compared with the traditional SP mixture.

Future Directions:

• Understand the randomness in field density distribution.

Conclusions

- There is a clear negative correlation between N_{design} and field density.
- A new parameter, N_{equ} , was proposed to characterize the field compaction effort.
- $N_{equ} \approx$ 30, regardless of traffic level or NMAS.
- By setting N_{design} as N_{equ} , the field density level of the SP5 mixture is significantly improved to the design density level.
- Performance tests results show that the rutting and cracking performance of SP5 mixture are not sacrificed compared with the traditional SP mixture.

Future Directions:

• Understand the randomness in field density distribution.

500

Conclusions

- There is a clear negative correlation between $N_{\rm design}$ and field density.
- A new parameter, N_{equ} , was proposed to characterize the field compaction effort.
- $N_{equ} \approx$ 30, regardless of traffic level or NMAS.
- By setting N_{design} as N_{equ} , the field density level of the SP5 mixture is significantly improved to the design density level.
- Performance tests results show that the rutting and cracking performance of SP5 mixture are not sacrificed compared with the traditional SP mixture.

Future Directions:

• Understand the randomness in field density distribution.

Thank you!